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The paper deals primarily with the question to what extent the object
modal pioposcd ac a powerful structuring method for large software systems
could serve ras a suitable basis for the construction of hard distributed
real t.me systems. A particular object model is proposed which supports
the idea of object autonomy in a perfect way. It is shown that object
autonomy is a key factor to meet extreme real time and fault tolerance
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I. INTRODUCTION

The present generation of real time operating systems supports real time requirements in a very

indirect way: designers of real time systems are merely provided with some handles to control

scheduling disciplines in the underlying operating system thereby minimizing timing uncertainties.

Examples of those control mechanisms are OS functions for the assignment and change of process

priorities or for locking pages in main memory in order to avoid unexpected delays of a program

execution due to paging[27.281. This philosophy in present day real time systems leaves the

responsibility of assuring that real time constraints are met up to the user. Application designers

have to define the desired process priorities, pages to be locked etc. in an off-line procedure which

includes also a validation step for checking that the real time requirements are met. No actual

checking of real time constraiits is performed by the real time system at run time. A small

change of the system configuration(hard-or software) raises the need to stop the system and res-

tart it later on after the successful off-line validation step.

The future generation of hard real time operating systems as for example MARUTIJ,3* claim to

meet real time constraints with a specified degree of reliability on an interactive request: the real

time conditions of a given application are checked agains.t the present system load and granted to

the user by an internal reservation policy. This yields the following important, consequences:

- The responsibility for assuring that real time constraints are met is shifted from the user to the

operating system: it is up to the operating system now to assign proper priorities to processes.

lock pages in main memory etc. The corresponding mechanisms are not accessible to users any ton For

more.

~cd
-Real time operating systems with this capability support an open job shop: the system load can ii t____on -

vary dynamically due to new applications or modifications of the hardware configuration as long
ut1on/
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as the operating system has granted to continue meeting the actual real time constraints.

These properties of future hard real time operating systems pose new challenges on adequate

means and concepts for their construction.

This paper deals with the question to what extent the object model proposed as a powerful struc-

turing means for many kinds of systems[26] could also serve as a suitable basis for the construc-

tion of hard real time systems. It is argued that an object architecture which enables designers to

decompose their system into a set of largely autonomous units seems to meet realtime require-

ments best.

In chapter 2 we will give a more precise definition of what is understood by functional autonomy

and discuss its role as a structuring principle in realtime systems.

In chapter 3 the elements of the proposed object model are introduced.

The power of the object model for the description of typical realtime tasks is demonstrated by

three examples in chapter 4.

Basic implementation considerations for the object model are presented in chapter 5.

In chapter 6 the issue of fault tolerance and its relation to an adequate object architecture is

raised These thoughts are of preliminary nature and need further investigations.

2. THE PRINCIPLE OF FUNCTIONAL AUTONOMY IN REALTME CONTROL PROGRFkAIS

Reaitime control programs are usually composed from a set of function modules which form a

hierarchical control structure as depicted in Figure 1. A module at a higher level controls adja-

cent lower level modules by coordinating their activities and /or providing directives for their par-

ticular tasks.

In well structured realtime programs this decomposition in control layers is done in such a way

that lower level modules adhere to the principle of (limited) functional autoioiy. This principle
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is established for a given module by three properties:

1. The module is in possession of all resources to perform its function when requested. If resources

are shared with other modules a transparent resource allocation mechanism assures proper alloca-

tion of missing resources in time whenever they are needed. At its extreme resources are allocated

permanently to a module. Distributed systems are particularly suited to support this philosophy.

2. Once created a module may initiate future activities in its own rights, i.e. it doesn't need exter-

nal stimulations by other modules. This rules out mechanisms such as the remote procedure call

as the only means for the activation of operations within a module.

3. Once an operation has been initiated within a module it can run through completion without

invocation of external services provided by other modules.

Strict observance of this principle yields the following noticeable adv;-atages:

-A low level module can continue operation for a certain period of time in the absence of its

supervisory control module.

- Fault tolerance may i,- established on the module basis with regard to the special reliability

degrees required in each module. A problem might arise in systems in which some modules are

shared between applications with different reliability requirements. This problem will be addressed

in a broader context in a later chapter.

- Critical realtime constraints within a module can be treated locally. They have no effects on

modules having their own resources associated to them. For example, a module containing an

operation which needs periodic activation every 5 msec might require t. high speed processor. All

other modules may still perform their function within their specified time limits ising a low speed

processor.

It can be observed that proper application of the principle of functional autonomy results in
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hierarchical system structures with the hardest realtime and fault tolerance requirements located

at the bottom layer. With increasing distance from the bottom layer realtime and reliability con-

straints decrease while the need for more computing power and storage capacity increases.

3. AN OBJECT MODEL SUPPORTING FUNCTIONAL AUTONOMY

In this chapter a simple object model is introduced which supports the idea of functional auton-

omy as introduced in the previous chapter. We also present an elegant way to express realtime

constraints. The model is described in a rather abstract way: we look at objects from a language

point of view and postpone implementation issues to a later chapter.

Our proposal for an ubject model is closely related to Hewitt's actor model 4,5,12': objects can be

thought of consisting of a collection of operations which manage an internal state. An object type

can be described as:

OBJECT ObjTypeName
Declaration of internal state;

OPERATION OperationNamel(--Parameters--)
DO statement sequence END

OPERATION OperationName2(--Parameters--)
DO statement sequence END

BEGIN
initialization of the object's state;

END ObjTypeName

Several object incarnations(called objects) may exist from an object type at any time:

a,b,c:ObjTypeName:

In the above example three objects named a,b,c have been created by a declarative statement. It
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is assumed that the initialization part of each object gets executed after object creation.

Another way of object creation is by calling a CREATE operation of the runtime environment or

the operating system.

An object gets activated within an object after arrival of a message which has been send to this

operation. The basic message handling semantics is assumed to be asynchronous, one-way: a send-

ing object is blocked until the message has been passed successfully to a transport system. It is

assumed that the transport system will deliver the message in an undefined but limited time to its

destination. The arrival at the specified destination triggers the activation of the corresponding

operation within the addressed object. The successful execution of an object's operation is called

an action,

This simple object model described above served as the basis for the distributed object oriented

languages CSSA 9,10,18 and POOLt 6'.

Since we assume implicit message receipt by an arriving message and since no replies are defined

in a one-way message handling scheme the only visible message handling primitive in the opera-

tion- tart of objects is a SEND primitive.

We propose that the SEND primitive takes the following form:

SEND <message> TO <destination> AT <time constraints>;

The <message> part may include additional control information such as semantic link informa-

tion in joints[21.

The <destination> part may be

a. a constant specifying an operation within an object by a qualified name

"ObjectName.OperationName"

or



b. a constant specifying an operation within an object type by a qualified name

"ObjectType.OperationName"

or

c. a variable of type operation name containing a value of either (a) or (b) above.

If an object type was specified in the destination part it is assumed that the message will be sent

to all objects which presently exist of this type. This will provide for a multicast capability of the

proposed message handling scheme which is considered particularly useful for the implementation

of fault tolerant structures. We will postpone this discussion to a later section.

The AT-part of the SEND operation allows the explicit definition of timing constraints connected

with the action specified in the SEND statement. It is proposed to provide expressions which

describe relative time intervals or the absolute time at which the addressed operation should be

carried out.

With the above explanations an operation takes the form:

OPERATION OperationName(--Parameters--)
DO

SEND...
SEND...

END OperationName

Since the statement sequence does not contain statem.nts wilh non- deterministic timing

behavior(due to the principle of function autonomy and to the semantics of the SEND operation)

every statement is time bound and operations are also time bound as a whole therefore.
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The property of time bounded operations together with the explicit specification of time con-

straints for actions in the AT-part of the SEND primitive forms a sufficient basis for the develop-

ment of smart schedulers which are capable to check and guarantee iealtime constraints[21.

If a message arrives at an object the addressed operation i- assumed to execute a-.,uically with

respect to simultaneous message arrivals at the same object(the term atomicity is used here with

respect to the indivisibility of the operation, a more comprehensive definition is given in [221).

The most rigorous way of assuring atomicity is to enforce that operations within an object

exclude each other in time as in CSSA[9]. A more elaborate way which avoids unnecessary wait-

ing delays in case that actions within one object are disjunct with respect to the data they access

is to principally allow parallel actions within an object and preserve atomicity by specifying

mutual exclusion relations between them[2i .

4. EXA MPLES

In order to demonstrate the potential power of the proposed object model for the description of

typical realtime control structures three examples are discussed below. The examples also illus-

Example 1: Action sequence triggered by an interrupt

It is assumed that a sequence of actions in n different objects Ubji..ObjN is triggered by an inter-

rupt signal. The interrupt signal is treated as a message sent by a predefined w,;tem object. The

object interconnection structure is shown in Figure 2a.

The first n-i objects contain only one operation with the following structure:
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OBJECT ObJX
OPERATION Op(-Parameters-)
DO

SEND Message TO ObjX+l.Op AT(0);
END Op;

BEGIN
Initialization;

END ObjX

The last object in the sequence does not contain any SEND statement. Figure 2b shows the

action sequence in a time diagram.

In this example an action in an object is triggered by a SEND primitive within another object, i e.

in order to perform some function an object relies completely on external stimulations. Since the

autonomy criteria 2 above is violated the autonomy of all objects is very poor

Example 2:Sequencing of actions by a supervisory object

The almost same effect as in example 1 can be obtained by a supervisory object which enforces

sequential execution of actions represented by the objects Obji ObjN

The object interconnection structure is shown in Figure 2a The supervisory object reveals the

following basic structure:



OBJECT Supervisor
VAR I: Intege-

OPEP ', I", N Op(--Pararneters--)
DC
tF I<N THEN

I:= I--1;
SEND Message TO ObjI.Op AT(O);

ELSE L=O;
END;

END O p;
BEGIN

END Supervisor

The objects Objl.ObJN follow the basic pattern as depicted below-

OBJECT ObjX
OPERA-TION Op(--Pararneters-
DO

SEN-D Nfe' sage TO :'upervbur Op) AT(OB.
END Op.

BEGIN
Initialization,
END ObiX

It is assumed that an interrupt mevs sge fr',ni a predefined system object will be 5fint periodllv11

to the Operation Op of Objec-t Supervisor .-Ns in the previous example Hl actin in Hie ohpjects

ObJ ..bjNaretrigered by external messages. ile. they are completelN dependent of the 1ueri

n-'r object in order to perform their functions. Therefore, the object autonomy is again very poor

since the autonomy criteria 2 has been violated. Figure 3b shows the resulting action sequence in

a time diagram.

Example 3: Autonomous objects
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The last example represents a system in which the principle of autonomy has been realized in an

ideal way. There, a set of objects Objl..ObjN perform their function largely independent from a

supervisory object. Occasionally the object Supervisor generates a set of updated parameters for

the objects ObjL..ObjN thereby enabling them to perform their task in a more optimal fashion

However, if the object Supervisor fails it is assumed that all objects Objl..ObjN may continue

operation under less optimal conditionE.

The object interconnection structure for this example is shown in Figure 4a.

T'he Supervisor object reveals the following basic structure:

OBJECT Supern isor
OPERATION Op(--Parameters--)
DO
Prepare parameters for objects Obji.-ObjN;
FOR I= I TO N
DO
SEND \essagel TO Obj1 Op AT O}:
END:

SENl) %Message2 TO Supervisor.Op AT(AT1)

END Op:
BEGIN
Initialization,

END Supervisor

The objects Objl..ObjN export two operations OpI and Op2. The operation Opi

accepts the initial parameter set and stores them internally for future use. It then issues the first

SEND to its own operation Op2. If Op2 has been activated once it will continue activating itself

periodically by an appropriate SEND statement.

This leads to the following basic structure for the objects Objl..ObjN:
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OBJECT ObjX
OPERATION Opl(--parameters--)
DO
Store parameters;
SEND Message2 TO ObjX.Op2 AT (0);
END Opl;

OPERATION Op2(--parameters--)
DO
SEND Message2 TO ObjX.Op2 AT(AT2);

END Op2;
BEGIN
Initialization;

END ObjX

It should be finally mentioned that inherent interrelations between different functions of a real-

time application might make it very hard to struture a system according to the principle of func-

tional autonomy. However, if a certain degree of functional autonomy has been achieved it should

be completel) retained in the final realization by corresponding autonomous objects.

5. BASIC LIPLEMENTATION CONSIDERATIONS

The following basic implementation considerations ignore specific reliability requirements for the

construction of fault tolerant structures Those question6 are addressed in the next, chapter.

Figure 5 reflects the basic implementation idea for objects proposed here. An object is considered

to constitute a team'l1,18 of a dynamically changing number of light-weight processes.

After object creation an object consists of exactly one process-the root process-and an empty

message queue. The root process will exist as long as the object exist. Its mer- purpose is to listen

to the message queue for incomirig messages. When a new message has arrived a pointer to it is

passed to the root process and the message is marked as "recognized'. The root process creates a
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light-weight process of type "server" apd passes the pointer of the recognized message to it. It

then forgets the message and waits for the next message to arrive.

This leads to the following basic implementation structure of the root process:

PROCESS Root
DO

LOOP
MessagePtr=WAIT;
Procld=CREATEPROCESS(MessagePtr);
END;

END Root

Each server process once created reads the message from the message buffer which turns the mes-

sage into the state "copied". The server process then identifies the operation which should get

executed and calls a subroutine to do the job(it is assumed that a reentrant procedure is provided

for each operation exported by an object). After successful completion of the call the server pro-

cess removes the message from the message buffer. This leads to the following basic implementa-

tion structure for a server process:

PROCESS Server(MessagePtr)
DO
READ(MessagePtr,Destination);
CALL OperationName(--Parameters--);
REMOVE(MessagePtr);
END Server

The proposed message handling scheme has the effect that every existing message in a message

buffer will be in one of three states:

-untouched

-recognized
-copied

An untou.hed message has not been recognized yet by the object. A recognized message has been
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taken into account by the object but no action has been carried out so far by the object. A copied

message has been successfully stored in the local address space of the object. The requested opera-

tion

might not have been startea yet, might be in progress or was completed already. For a removed

message the corresponding action has been carried out successfully.

The proposed scheme of late message removal in combination with the additional message state

information may serve as a basis for efficient recovery procedures in case of node crashes.

Assume for example that the following messages with the indicated states are hold in a message

buffer shortly before the node at which the corresponding object is located crashed( it is assumed

that the message buffer uses a physically separate storage which survived the crash):

-message Ml:copied
-message M2:recognized
-message M3:untouched

For an object with idempotent operations11l the object can simply be recovered by turning the

states of messages M1 and M2 to "untouched" and restart the root process again.

If the operations not idempotent only the state of \1l is turned into "untouched". The message

M3 is either removed or turned into the state "untouched" after a clean-up of the object's inter-

nal state depending on whether a forward or backward error recovery policy is in effect'7,19].

Notice that the proposed implementation scheme may lead to an arbitrary number of simultane-

ous server processes existing within an object. However, since the server processes all share the

common working store of their object and since they are of the identical process type( which is

assumed to be a code templte residing permanently in the object's working store) efficient light

weight implementations are possible.

Another problem connected to simultaneous server processes within an object is the need for syn-

chronizing the accesses to shared data. We assume that the formulation of mutual exclusion
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conditions for operations as part of the object's description will enable a clever compiler to insert

semaphore ,perations at the appropriate places so that we can further ignore this problem here.

Applying the proposed object architecture for structuring complete systems results in distributed

programs. With regard to the criteria

retaining functional autonomy it is highly recommended to locate objects on separate processing

nodes. This leads naturally to a distributed systems approach for the realtime systems under con-

sideration.

6. PRELIMINARY THOUGHTS ON FAULT TOLERANCE

The potential of implementing any desired degree of fault tolerance is still the most crucial(and

most challenging) requirement for realtime systems.

In this section we give a brief overview of current systematic approaches to fault tolerance with

respect to distributed system environments. We then discuss the suitability of these methods for

realtime systems. The discussion is focused on the most popular class of failures, the so called

fall-and stop failures[7] . A typical example for this class of failures is a processor crash due to disr-

uption of power supply. There are other classes of failures which don't show the nice behavior of

fail-and stop failures which need a more sophisticated treatment.

If a failure occurred we assume that an operation couldn't run through completion thus leaving

the object in an inconsistent state( this is the most general case).

All published schemes for handling such a situation are based on the restoration of a consistent

state where a restart is possiblef7,19,20]. Notice that a local recovery step within the object is

generally insufficient since the locally restored state might conflict with global conditions in other

objects. This raises the need for a global recovery procedure after each single object failure. A

consistent state after a failure could be obtained in two different ways:
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-In a backward error recovery scheme the system state is reset to some saved consistent state

passed through in the past after replacement of the failed component,

-In a forward error recovery scheme the history is basically lost and the system state is set for-

ward to some well known consistent state for a later restart.

Backward and forward error recovery schemes differ substantially in the basic organization and

algorithms applied to reach the goal. They are also heavily dependent on the basic architecture of

the software.

If an object architecture with a synchronous RPC-like interaction mechanism between objects is

used (called the object/action paradigm in r221) the atomicity property for actions as defined in

141 will provide for an adequate backward error recovery scheme.

If a software architecture based on asynchronous message passing is used (referred to as the

process, message paradigm in 231) checkpointing in combination with automatic rollback has been

proposed as the appropriate backward error recovery scheme',. A particular problem of recovery

in asynchronous systems is the potential of rolling back to the initial system state called the

"domino effect" which has been analyzed by several authors[13 21 .

Randell23' has shown in a recent paper that atomic actions and checkpointing are dual recovery

concepts with basically identical power.

Unfortunately, not too many results of the outlined recovery schemes proposed so far are applica-

ble in the realtime world for the following reasons:

1. Backward error recovery is generally not suited for realtime applications since the environment

controlled by the computer moves forward to a state which affects the restored system state.

Therefore forward error recovery is the more realistic technique to handle failure situations in

realtime systems.
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2. The implications of forward error recovery in a distributed realtime environment don't seem to

be well understood at the moment and only a few papers addres the problem in a more general

sense[8,25].

3. Forward error recovery cannot make effective use of history information gathered by some state

saving mechanism. Thus neither checkpointing nor atomic actions seem to be the schemes on

which fault tolerance considerations may be based on.

The above discussion can be summerized as follows:

1. Fault tolerance schemes for realtime systems should be based on forward error recovery.

2. More basic research investigations are necessary in order to understand the nature of forward

error recovery in the context of distributed realtime systems and to come up with a general

scheme for handling failure situations.

Let us investigate now the suitability of the proposed object model for the realization of fault

tolerant systems as far as this seems to be possible right now.

The first question to be answered is: Given a system of interacting objects, should fault tolerance

be associated

with objects or with actions?

Since objects could be shared by different applications with differing fault tolerance degrees associ-

ating fault tolerance with actions would raise the need for dynamically changing the fault toler-

ance degree of objects. It is our opinion that efficiency reasons rule out such a strategy. Therefore

it is assumed that fault tolerance is a property which is always connected to objects. If objects are

shared between applications with different fault tolerance requirements it is assumed that the

highest degree of fault tolerance requested for a particular object will be installed.

We propose that for any particular object one may choose a specific degree of fault tolerance from
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a predefined list known to the system. Below is a list with possible fault tolerance degrees:

(a) none
(b) stable storage[17]
(c) atomicity of actions
(d) passive stand-by redundancy
(e) active stand-by redundancy
(f) 3-modular redundancy

A single failure will leave an object with fault tolerance degree

(a) in an undefined state,

(b) in an undefined state but with crucial information saved on stable

storage,

(c) in a defined qtablP state due to the assumed all-or-nothing semantics

of the failed action,

(d-f) in full operation due to the failure masking effect of the implemented fault tolerance dcgree.

In cases d-f only local reactions are necessary in order to recover from the failure. The cases a-c

require generally global forward recovery procedures to be carried out in addition to a local

recovery step for the corresponding object. If the principle of autonomy has been consequently

applied to a system design the required global recovery procedure shrinks to a NULL operation.

The above considerations indicate that the proposed object model might might, favor extremely

simple recovery procedures after a failure. This seems to be another strong argument for the pro-

posed object architecture which needs deeper investigations.
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CONCLUSION

The paper proposes an object architecture for distributed realtime systems based on asynchronous

message passing. It has bcen shown that the proposed model

(a) may be vised to describe even complex communication and realtime patterns in a simple and

elegant way,

(b) is well suited to retain the principle of functional autonomy in the object architecture.

Preliminary considerations on fault tolerance aspects indicate that consequent observance of the

principle of functional autonomy will also favor simple recovery procedures.

Forward error recovery is considered the more promising recovery approach for realtime systems.

General methods supporting forward error recovery are still missing and nee' f,,-6er -1.-h

investigations.



Figure 1 Hierarchical Control Structure of a Process Control System
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